Pressure Model of Control Valve Based on LS-SVM with the Fruit Fly Algorithm

نویسندگان

  • Aiqin Huang
  • Yong Wang
چکیده

Control valve is a kind of essential terminal control component which is hard to model by traditional methodologies because of its complexity and nonlinearity. This paper proposes a new modeling method for the upstream pressure of control valve using the least squares support vector machine (LS-SVM), which has been successfully used to identify nonlinear system. In order to improve the modeling performance, the fruit fly optimization algorithm (FOA) is used to optimize two critical parameters of LS-SVM. As an example, a set of actual production data from a controlling system of chlorine in a salt chemistry industry is applied. The validity of LS-SVM modeling method using FOA is verified by comparing the predicted results with the actual data with a value of MSE 2.474 × 10. Moreover, it is demonstrated that the initial position of FOA does not affect its optimal ability. By comparison, simulation experiments based on PSO algorithm and the grid search method are also carried out. The results show that LS-SVM based on FOA has equal performance in prediction accuracy. However, from the respect of calculation time, FOA has a significant advantage and is more suitable for the online prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm

For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...

متن کامل

ECT and LS-SVM Based Void Fraction Measurement of Oil-Gas Two-Phase Flow

A method based on Electrical Capacitance Tomography (ECT) and an improved Least Squares Support Vector Machine (LS-SVM) is proposed for void fraction measurement of oil-gas two-phase flow. In the modeling stage, to solve the two problems in LS-SVM, pruning skills are employed to make LS-SVM sparse and robust; then the Real-Coded Genetic Algorithm is introduced to solve the difficult problem...

متن کامل

Optimal Control Pressure for Leakage Minimization in Water Distribution Systems Using Imperialist Competitive Algorithm

One of the key factors affecting leakage in water distribution systems is network pressure management by putting Pressure Reduce Valves (PRV) in the flow path and optimal regulation of these vales in water networks. This study aimed at investigating optimal pressure management problems so as to minimize leakage in water distribution networks. To do so, an approach was proposed for both optimal ...

متن کامل

An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications

This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find...

متن کامل

Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine

Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithms

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014